Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.972
Filtrar
1.
Mol Ecol ; 33(9): e17346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581173

RESUMO

Wildlife populations are becoming increasingly fragmented by anthropogenic development. Small and isolated populations often face an elevated risk of extinction, in part due to inbreeding depression. Here, we examine the genomic consequences of urbanization in a caracal (Caracal caracal) population that has become isolated in the Cape Peninsula region of the City of Cape Town, South Africa, and is thought to number ~50 individuals. We document low levels of migration into the population over the past ~75 years, with an estimated rate of 1.3 effective migrants per generation. As a consequence of this isolation and small population size, levels of inbreeding are elevated in the contemporary Cape Peninsula population (mean FROH = 0.20). Inbreeding primarily manifests as long runs of homozygosity >10 Mb, consistent with the effects of isolation due to the rapid recent growth of Cape Town. To explore how reduced migration and elevated inbreeding may impact future population dynamics, we parameterized an eco-evolutionary simulation model. We find that if migration rates do not change in the future, the population is expected to decline, though with a low projected risk of extinction. However, if migration rates decline or anthropogenic mortality rates increase, the potential risk of extinction is greatly elevated. To avert a population decline, we suggest that translocating migrants into the Cape Peninsula to initiate a genetic rescue may be warranted in the near future. Our analysis highlights the utility of genomic datasets coupled with computational simulation models for investigating the influence of gene flow on population viability.


Assuntos
Fluxo Gênico , Genética Populacional , Endogamia , Dinâmica Populacional , Animais , África do Sul , Densidade Demográfica , Urbanização , Migração Animal
2.
BMJ Open ; 14(4): e078911, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626977

RESUMO

INTRODUCTION: Understanding human mobility's role in malaria transmission is critical to successful control and elimination. However, common approaches to measuring mobility are ill-equipped for remote regions such as the Amazon. This study develops a network survey to quantify the effect of community connectivity and mobility on malaria transmission. METHODS: We measure community connectivity across the study area using a respondent driven sampling design among key informants who are at least 18 years of age. 45 initial communities will be selected: 10 in Brazil, 10 in Ecuador and 25 in Peru. Participants will be recruited in each initial node and administered a survey to obtain data on each community's mobility patterns. Survey responses will be ranked and the 2-3 most connected communities will then be selected and surveyed. This process will be repeated for a third round of data collection. Community network matrices will be linked with each country's malaria surveillance system to test the effects of mobility on disease risk. ETHICS AND DISSEMINATION: This study protocol has been approved by the institutional review boards of Duke University (USA), Universidad San Francisco de Quito (Ecuador), Universidad Peruana Cayetano Heredia (Peru) and Universidade Federal Minas Gerais (Brazil). Results will be disseminated in communities by the end of the study.


Assuntos
Redes Comunitárias , Malária , Humanos , Peru/epidemiologia , Equador/epidemiologia , Brasil/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle
3.
Heliyon ; 10(8): e29231, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644897

RESUMO

In response to high population density, the desert locust, Schistocerca gregaria, becomes gregarious and forms swarms that can cause significant damage to crops and pastures, threatening food security of human populations from western Africa to India. This switch from solitary to gregarious populations is highly dependent on favorable weather conditions. Climate change, which has been hypothesized to shift conditions towards increasing risks of gregarization, is therefore likely to have significant impacts on the spatial distribution and likelihood of outbreak events. However, the desert locust is intensely managed at large scales, which possibly counteracts any increased risk of outbreaks due to a more favorable climate. Consequently, understanding the changes in risks in the future involves teasing out the effects of climate change and management actions. Here we studied the dynamics of gregarization at the very early stages of potential outbreaks, in parallel with trends in climate and management, between 1985 and 2018 in western Africa. We used three different spatial scales, with the goal to have a better understanding of the potential effects of climate change per se while controlling for management. Our first approach was to look at a regional scale, where we observed an overall decrease in gregarization events. However, this scale includes very heterogeneous environments and management efforts. To consider this heterogeneity, we divided the area into a grid of 0.5° cells. For each cell, a climate analysis was performed for rainfall and temperature, with trends obtained by a harmonic decomposition model on monthly data. Analyses of gregarization showed only a few significant trends, both positive and negative, mainly found in western Mauritania where management effort has increased. To improve the statistical power, these cells were then grouped into larger homogeneous climatic clusters, i.e. groups of cells with similar climatic conditions and similar climatic trends over the study period. At this scale, gregarization events depend on the intersection between climate conditions and management efforts. The clusters where gregarization increased were also the ones with the highest increase of management. These results highlight the important effect of preventive management, which may counteract the positive effects of climate change on locust proliferation.

4.
Biology (Basel) ; 13(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38666839

RESUMO

Long-term variations in population structure, growth, mortality, exploitation rate, and recruitment pattern of two major commercial small pelagic fishes (CSPFs) (Decapterus maruadsi and Trachurus japonicus) are reported based on bottom trawl survey data collected during 2006-2020 in the Beibu Gulf, South China Sea. All individuals collected during each sampling quarter over a period of 15 years were subjected to laboratory-based analysis. In this study, the stock of D. maruadsi and T. japonicus inhabiting the Beibu Gulf was assessed using length-based methods (bootstrapped electronic length frequency analysis (ELEFAN)) to complete stock assessment in different fishery management periods (the division of fisheries management periods was based on China's input and output in the South China Sea offshore fisheries over 15 years, specifically divided into period I (2006-2010), period II (2011-2015), and period III (2016-2020)). The results showed that the mean body length, dominant body size, and estimated asymptotic length of two CSPFs decreased, whereas their growth coefficient decreased, indicating miniaturization and slower growth, respectively. Estimated exploitation rates and catching body length for two CSPFs indicated that both stocks in the Beibu Gulf were overexploited in period I and moderately exploited after 2011. These stocks were taking a good turn in status in period III, with the exploitation rate much lower than the initial period and reversing the downward trend in catching body length. Furthermore, the variations in the spawning season of the two CSPF stocks and their barely satisfactory expected yield indicated the complexity of the current fishery management in the Beibu Gulf. These results suggest that management measures to reduce fishing pressure may have a positive influence on the biological characteristics of those CSPFs in the Beibu Gulf; however, the stock structure already affected by overfishing will be a huge challenge for the conservation and restoration of fisheries resources in the future. Given that the current stocks of D. maruadsi and T. japonicus in the Beibu Gulf still have low first-capture body length (Lc) and high fishing mortality (F) (compared to F0.1), we identify a need to refine population structure by controlling fishing efforts and increasing catchable size, and more consideration should be given to the local fishery resource status in fisheries management.

5.
Ecol Appl ; : e2965, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629596

RESUMO

Habitat loss is affecting many species, including the southern mountain caribou (Rangifer tarandus caribou) population in western North America. Over the last half century, this threatened caribou population's range and abundance have dramatically contracted. An integrated population model was used to analyze 51 years (1973-2023) of demographic data from 40 southern mountain caribou subpopulations to assess the effectiveness of population-based recovery actions at increasing population growth. Reducing potential limiting factors on threatened caribou populations offered a rare opportunity to identify the causes of decline and assess methods of recovery. Southern mountain caribou abundance declined by 51% between 1991 and 2023, and 37% of subpopulations were functionally extirpated. Wolf reduction was the only recovery action that consistently increased population growth when applied in isolation, and combinations of wolf reductions with maternal penning or supplemental feeding provided rapid growth but were applied to only four subpopulations. As of 2023, recovery actions have increased the abundance of southern mountain caribou by 52%, compared to a simulation with no interventions. When predation pressure was reduced, rapid population growth was observed, even under contemporary climate change and high levels of habitat loss. Unless predation is reduced, caribou subpopulations will continue to be extirpated well before habitat conservation and restoration can become effective.

6.
J R Soc Interface ; 21(213): 20230657, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38565159

RESUMO

Describing the space-time evolution of urban population is a fundamental challenge in the science of cities, yet a complete theoretical treatment of the underlying dynamics is still missing. Here, we first reconstruct the evolution of London (UK) over 180 years and show that urban growth consists of an initial phase of diffusion-limited growth, followed by the development of the railway transport network and a consequential shift from central to suburban living. Such dynamics-which are analogous to angiogenesis in biological systems-can be described by a minimalist reaction-diffusion model coupled with economic constraints and an adaptive transport network. We then test the generality of our approach by reproducing the evolution of Sydney, Australia, from 1851 to 2011. We show that the rail system coevolves with urban population, displaying hierarchical characteristics that remain constant over time unless large-scale interventions are put in place to alter the modes of transport. These results demonstrate that transport schemes are first-order controls of long-term urbanization patterns and efforts aimed at creating more sustainable and healthier cities require careful consideration of population-transport feedbacks.


Assuntos
Urbanização , Humanos , Cidades , População Urbana , Dinâmica Populacional , Densidade Demográfica
7.
Math Biosci ; : 109190, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631561

RESUMO

This paper proposes a bidimensional modeling framework for Wolbachia invasion, assuming imperfect maternal transmission, incomplete cytoplasmic incompatibility, and direct infection loss due to thermal stress. Our model adapts to various Wolbachia strains and retains all properties of higher-dimensional models. The conditions for the durable coexistence of Wolbachia-carrying and wild mosquitoes are expressed using the model's parameters in a compact closed form. When the Wolbachia bacterium is locally established, the size of the remanent wild population can be assessed by a direct formula derived from the model. The model was tested for four Wolbachia strains undergoing laboratory and field trials to control mosquito-borne diseases: wMel, wMelPop, wAlbB, and wAu. As all these bacterial strains affect the individual fitness of mosquito hosts differently and exhibit different levels of resistance to temperature variations, the model helped to conclude that: (1) the wMel strain spreads faster in wild mosquito populations; (2) the wMelPop exhibits lower resilience but also guarantees the smallest size of the remanent wild population; (3) the wAlbB strain performs better at higher ambient temperatures than others; (4) the wAu strain is not sustainable and cannot persist in the wild mosquito population despite its resistance to high temperatures.

8.
J Anim Ecol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38634153

RESUMO

Research Highlight: Christian, M., Oosthuizen, W. C., Bester, M. N., & de Bruyn, P. N. (2024). Robustly estimating the demographic contribution of immigration: Simulation, sensitivity analysis and seals. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.14053. Immigration can have profound consequences for local population dynamics and demography, but collecting data to accurately quantifying it is challenging. The recent rise of integrated population models (IPMs) offers an alternative by making it possible to estimate immigration without the need for explicit data, and to quantify its contribution to population dynamics through transient Life Table Response Experiments (tLTREs). Simulation studies have, however, highlighted that this approach can be prone to bias and overestimation. In their new study, Christian et al. address one of the root causes of this issue by improving the estimation of time variation in vital rates and immigration using Gaussian processes in lieu of traditionally used temporal random effects. They demonstrate that IPM-tLTRE frameworks with Gaussian processes produce more accurate and less biased estimates of immigration and its contribution to population dynamics and illustrate the applicability of this approach using a long-term data set on elephant seals (Mirounga leonida). Results are validated with a simulation study and suggest that immigration of breeding females has been central for population recovery of elephant seals despite the species' high female site fidelity. Christian et al. thus present new insights into population regulation of long-lived marine mammals and highlight the potential for using Gaussian process priors in IPMs. They also illustrate a suite of 'best practices' for state-of-the-art IPM-tLTRE analyses and provide an inspirational example for the kind of ecological modelling workflow that can be invaluable not just as a starting point for fellow ecologists picking up or improving their own IPM-tLTRE analyses, but also for teaching and in contexts where model estimates are used for informing management and conservation decision-making.

9.
Animals (Basel) ; 14(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612363

RESUMO

The Mongolian racerunner, Eremias argus, is a small lizard endemic to Northeast Asia that can serve as an excellent model for investigating how geography and past climate change have jointly influenced the evolution of biodiversity in this region. To elucidate the processes underlying its diversification and demography, we reconstructed the range-wide phylogeographic pattern and evolutionary trajectory, using phylogenetic, population genetic, landscape genetic, Bayesian phylogeographic reconstruction and ecological niche modeling approaches. Phylogenetic analyses of the mtDNA cyt b gene revealed eight lineages that were unbounded by geographic region. The genetic structure of E. argus was mainly determined by geographic distance. Divergence dating indicated that E. argus and E. brenchleyi diverged during the Mid-Pliocene Warm Period. E. argus was estimated to have coalesced at~0.4351 Ma (Marine Isotope Stage 19). Bayesian phylogeographic diffusion analysis revealed out-of-Inner Mongolia and rapid colonization events from the end of the Last Interglacial to the Last Glacial Maximum, which is consistent with the expanded suitable range of the Last Glacial Maximum. Pre-Last Glacial Maximum growth of population is presented for most lineages of E. argus. The Glacial Maximum contraction model and the previous multiple glacial refugia hypotheses are rejected. This may be due to an increase in the amount of climatically favorable habitats in Northeast Asia. Furthermore, E. argus barbouri most likely represents an invalid taxon. The present study is the first to report a range-wide phylogeography of reptiles over such a large region in Northeast Asia. Our results make a significant contribution towards understanding the biogeography of the entire Northeast Asia.

10.
Evol Appl ; 17(4): e13684, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617828

RESUMO

Harvesting and culling are methods used to monitor and manage wildlife diseases. An important consequence of these practices is a change in the genetic dynamics of affected populations that may threaten their long-term viability. The effective population size (N e) is a fundamental parameter for describing such changes as it determines the amount of genetic drift in a population. Here, we estimate N e of a harvested wild reindeer population in Norway. Then we use simulations to investigate the genetic consequences of management efforts for handling a recent spread of chronic wasting disease, including increased adult male harvest and population decimation. The N e/N ratio in this population was found to be 0.124 at the end of the study period, compared to 0.239 in the preceding 14 years period. The difference was caused by increased harvest rates with a high proportion of adult males (older than 2.5 years) being shot (15.2% in 2005-2018 and 44.8% in 2021). Increased harvest rates decreased N e in the simulations, but less sex biased harvest strategies had a lower negative impact. For harvest strategies that yield stable population dynamics, shifting the harvest from calves to adult males and females increased N e. Population decimation always resulted in decreased genetic variation in the population, with higher loss of heterozygosity and rare alleles with more severe decimation or longer periods of low population size. A very high proportion of males in the harvest had the most severe consequences for the loss of genetic variation. This study clearly shows how the effects of harvest strategies and changes in population size interact to determine the genetic drift of a managed population. The long-term genetic viability of wildlife populations subject to a disease will also depend on population impacts of the disease and how these interact with management actions.

11.
PeerJ ; 12: e17223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618573

RESUMO

Background: The beet armyworm, Spodoptera exigua (Hübner), is an important agricultural pest worldwide that has caused serious economic losses in the main crop-producing areas of China. To effectively monitor and control this pest, it is crucial to investigate its population dynamics and seasonal migration patterns in northern China. Methods: In this study, we monitored the population dynamics of S. exigua using sex pheromone traps in Shenyang, Liaoning Province from 2012 to 2022, combining these data with amigration trajectory simulation approach and synoptic weather analysis. Results: There were significant interannual and seasonal variations in the capture number of S. exigua, and the total number of S. exigua exceeded 2,000 individuals in 2018 and 2020. The highest and lowest numbers of S. exigua were trapped in September and May, accounting for 34.65% ± 6.81% and 0.11% ± 0.04% of the annual totals, respectively. The average occurrence period was 140.9 ± 9.34 days during 2012-2022. In addition, the biomass of S. exigua also increased significantly during these years. The simulated seasonal migration trajectories also revealed varying source regions in different months, primarily originated from Northeast China and East China. These unique insights into the migration patterns of S. exigua will contribute to a deeper understanding of its occurrence in northern China and provide a theoretical basis for regional monitoring, early warning, and the development of effective management strategies for long-range migratory pests.


Assuntos
Agricultura , Humanos , Animais , Spodoptera , Estações do Ano , Dinâmica Populacional , China/epidemiologia
12.
BMC Ecol Evol ; 24(1): 47, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632521

RESUMO

BACKGROUND: Over the past decade, theory and observations have suggested intraspecific variation, trait-based differences within species, as a buffer against biodiversity loss from multiple environmental changes. This buffering effect can only occur when different populations of the same species respond differently to environmental change. More specifically, variation of demographic responses fosters buffering of demography, while variation of trait responses fosters buffering of functioning. Understanding how both responses are related is important for predicting biodiversity loss and its consequences. In this study, we aimed to empirically assess whether population-level trait responses to multiple environmental change drivers are related to the demographic response to these drivers. To this end, we measured demographic and trait responses in microcosm experiments with two species of ciliated protists. For three clonal strains of each species, we measured responses to two environmental change drivers (climate change and pollution) and their combination. We also examined if relationships between demographic and trait responses existed across treatments and strains. RESULTS: We found different demographic responses across strains of the same species but hardly any interactive effects between the two environmental change drivers. Also, trait responses (summarized in a survival strategy index) varied among strains within a species, again with no driver interactions. Demographic and trait responses were related across all strains of both species tested in this study: Increasing intrinsic growth and self-limitation were associated with a shift in survival strategy from sit-and-wait towards flee. CONCLUSIONS: Our results support the existence of a link between a population's demographic and trait responses to environmental change drivers in two species of ciliate. Future work could dive deeper into the specifics of phenotypical trait values, and changes therein, related to specific life strategies in different species of ciliate and other zooplankton grazers.


Assuntos
Biodiversidade , Mudança Climática , Fenótipo , Demografia
13.
Elife ; 122024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592269

RESUMO

Visual detection is a fundamental natural task. Detection becomes more challenging as the similarity between the target and the background in which it is embedded increases, a phenomenon termed 'similarity masking'. To test the hypothesis that V1 contributes to similarity masking, we used voltage sensitive dye imaging (VSDI) to measure V1 population responses while macaque monkeys performed a detection task under varying levels of target-background similarity. Paradoxically, we find that during an initial transient phase, V1 responses to the target are enhanced, rather than suppressed, by target-background similarity. This effect reverses in the second phase of the response, so that in this phase V1 signals are positively correlated with the behavioral effect of similarity. Finally, we show that a simple model with delayed divisive normalization can qualitatively account for our findings. Overall, our results support the hypothesis that a nonlinear gain control mechanism in V1 contributes to perceptual similarity masking.


Assuntos
Macaca , Primatas , Animais , Mascaramento Perceptivo , Imagens com Corantes Sensíveis à Voltagem
14.
Plants (Basel) ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611476

RESUMO

To explore the population structures and dynamics of Rhododendron shrub communities at different stages of succession in northwest Guizhou, China, this study examined the populations of Rhododendron annae and Rhododendron irroratum shrub with two different stages. A space-for-time substitution was employed to establish the diameter class/height structures, static life tables, and survival/mortality rate/disappearance rate curves of both Rhododendron populations with different orders of succession. Their structural and quantitative dynamics were analyzed, and their development trends were predicted. The results showed that, quantitatively, the populations of R. annae and R. irroratum in the two Rhododendron communities with different orders of succession were dominated by age classes one, two, and three as well as height classes i, ii, and iii. The number of Rhododendron plants at the three age classes and the three height classes accounted for 97.61-100% of the total. The quantitative dynamic indices of R. annae and R. irroratum were both greater than 0, with and without considering external interference. In terms of age class and height structures, both Rhododendron populations were expanding populations, presenting "inverted-J-shaped" and irregular pyramid patterns. There was a sufficient number of young individuals, but few or no old individuals. Both survival curves of the populations of R. annae and R. irroratum in the two Rhododendron communities with different orders of succession belonged to the Deevy-II type. In the late stage of succession, the mortality curves and disappearance curves of both Rhododendron populations in these communities presented a trend of increasing first and then decreasing with increasing age class. This result indicates that at each age class, R. annae and R. irroratum showed a trend of gradual increase after two, four, and six years. In brief, the populations of R. annae and R. irroratum have rich reserves of seedlings and saplings, but high mortality and disappearance rates. In this context, it is necessary to reduce human interference and implement targeted conservation measures to promote the natural renewal of Rhododendron populations.

15.
Circ Res ; 134(9): 1098-1112, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662866

RESUMO

As global temperatures rise, extreme heat events are projected to become more frequent and intense. Extreme heat causes a wide range of health effects, including an overall increase in morbidity and mortality. It is important to note that while there is sufficient epidemiological evidence for heat-related increases in all-cause mortality, evidence on the association between heat and cause-specific deaths such as cardiovascular disease (CVD) mortality (and its more specific causes) is limited, with inconsistent findings. Existing systematic reviews and meta-analyses of epidemiological studies on heat and CVD mortality have summarized the available evidence. However, the target audience of such reviews is mainly limited to the specific field of environmental epidemiology. This overarching perspective aims to provide health professionals with a comprehensive overview of recent epidemiological evidence of how extreme heat is associated with CVD mortality. The rationale behind this broad perspective is that a better understanding of the effect of extreme heat on CVD mortality will help CVD health professionals optimize their plans to adapt to the changes brought about by climate change and heat events. To policymakers, this perspective would help formulate targeted mitigation, strengthen early warning systems, and develop better adaptation strategies. Despite the heterogeneity in evidence worldwide, due in part to different climatic conditions and population dynamics, there is a clear link between heat and CVD mortality. The risk has often been found to be higher in vulnerable subgroups, including older people, people with preexisting conditions, and the socioeconomically deprived. This perspective also highlights the lack of evidence from low- and middle-income countries and focuses on cause-specific CVD deaths. In addition, the perspective highlights the temporal changes in heat-related CVD deaths as well as the interactive effect of heat with other environmental factors and the potential biological pathways. Importantly, these various aspects of epidemiological studies have never been fully investigated and, therefore, the true extent of the impact of heat on CVD deaths remains largely unknown. Furthermore, this perspective also highlights the research gaps in epidemiological studies and the potential solutions to generate more robust evidence on the future consequences of heat on CVD deaths.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/epidemiologia , Temperatura Alta/efeitos adversos , Calor Extremo/efeitos adversos , Fatores de Risco , Mudança Climática
16.
Glob Chang Biol ; 30(4): e17271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613240

RESUMO

Ecological and evolutionary theories have proposed that species traits should be important in mediating species responses to contemporary climate change; yet, empirical evidence has so far provided mixed evidence for the role of behavioral, life history, or ecological characteristics in facilitating or hindering species range shifts. As such, the utility of trait-based approaches to predict species redistribution under climate change has been called into question. We develop the perspective, supported by evidence, that trait variation, if used carefully can have high potential utility, but that past analyses have in many cases failed to identify an explanatory value for traits by not fully embracing the complexity of species range shifts. First, we discuss the relevant theory linking species traits to range shift processes at the leading (expansion) and trailing (contraction) edges of species distributions and highlight the need to clarify the mechanistic basis of trait-based approaches. Second, we provide a brief overview of range shift-trait studies and identify new opportunities for trait integration that consider range-specific processes and intraspecific variability. Third, we explore the circumstances under which environmental and biotic context dependencies are likely to affect our ability to identify the contribution of species traits to range shift processes. Finally, we propose that revealing the role of traits in shaping species redistribution may likely require accounting for methodological variation arising from the range shift estimation process as well as addressing existing functional, geographical, and phylogenetic biases. We provide a series of considerations for more effectively integrating traits as well as extrinsic and methodological factors into species redistribution research. Together, these analytical approaches promise stronger mechanistic and predictive understanding that can help society mitigate and adapt to the effects of climate change on biodiversity.


Assuntos
Biodiversidade , Mudança Climática , Filogenia , Geografia , Fenótipo
17.
J Pestic Sci ; 49(1): 15-21, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38450092

RESUMO

A lure composed of (Z)-11-hexadecenal, (Z)-11-hexadecenyl acetate, and (Z)-11-hexadecen-1-ol at a ratio of 5 : 5 : 1 at a dose of 0.01 mg was optimal for the attraction of the Vietnamese strain of the diamondback moth (DBM). The combination of the sex pheromone with a plant volatile, allyl isothiocyanate, significantly increased the attraction of the pheromone trap. Females were also attracted, but they were only about 2% of all moths captured. In plots with 120-130 traps per ha, mass trapping with the combined lures reduced the DBM larval densities in cabbage fields as effectively as the spraying of insecticides 6 to 8 times. The weekly trap catches indicated that DBM adult densities in the mass-trapping fields were low until 28 days after transplantation, and then were kept to a modest increase until day 49. This field study also shows that the trap catches were well correlated with the DBM larval densities.

18.
Front Microbiol ; 15: 1287721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450160

RESUMO

Wheat, a staple food crop for 35% of the global population, faces a threat from Helminthosporium leaf blight (HLB), a complex of spot blotch (Bipolaris sorokiniana) and tan spot (Pyrenophora-tritici-repentis) diseases under warm and humid conditions. However, in Indian conditions, the knowledge of existing pathogen populations associated with the HLB complex is limited and largely dominated by only B. sorokiniana (spot blotch). To address this, diseased samples were collected from all six wheat growing zones during 2020-2022. The pathogenic species were identified through in-depth morphological characterization, supplemented with ITS-rDNA and GAPDH sequence analysis, a diagnostic SCAR marker, and pathogenicity studies on two wheat varieties: Sonalika and HD2733. The 32 isolates collected from 10 different states consist of B. spicifera (12.5% of all isolates), Exserohilum rostratum (9.3%), Bipolaris oryzae (3.1%), and B. sorokiniana (75%). B. sorokiniana exhibited the highest disease severity on both varieties. Other lesser-known pathogenic species also produced comparable disease severity as B. sorokiniana isolates and, therefore are economically important. Unraveling pathogen composition and biology aids in disease control and resistance breeding. Our study highlights economically impactful and lesser-known pathogenic species causing wheat leaf blight/spot blotch in India, guiding both current management and future resistance breeding strategies in plant pathology.

19.
Front Plant Sci ; 15: 1345624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450397

RESUMO

Numerous studies have revealed that past geological events and climatic fluctuations had profoundly affected the genetic structure and demographic patterns of species. However, related species with overlapping ranges may have responded to such environmental changes in different ways. In this study, we compared the genetic structure and population dynamics of two typical desert shrubs with overlapping distributions in northern China, Nitraria tangutorum and Nitraria sphaerocarpa, based on chloroplast DNA (cpDNA) variations and species distribution models. We sequenced two cpDNA fragments (trnH-trnA and atpH-atpI) in 633 individuals sampled from 52 natural populations. Twenty-four chlorotypes, including eight rare chlorotypes, were identified, and a single dominant haplotype (H4) widely occurred in the entire geographical ranges of the two species. There were also a few distinctive chlorotypes fixed in different geographical regions. Population structure analyses suggested that the two species had significantly different levels of total genetic diversity and interpopulation differentiation, which was highly likely correlated with the special habitat preferences of the two species. A clear phylogeographic structure was identified to exist among populations of N. sphaerocarpa, but not exist for N. tangutorum. The neutral tests, together with the distribution of pairwise differences revealed that N. tangutorum experienced a sudden demographic expansion, and its expansion approximately occurred between 21 and 7 Kya before present, while a rapid range expansion was not identified for N. sphaerocarpa. The ecological niche modeling (ENM) analysis indicated that the potential ranges of two species apparently fluctuated during the past and present periods, with obvious contraction in the Last Glacial Maximum (LGM) and recolonization in the present, respectively, comparing to the Last Interglacial (LIG). These findings suggest that the two species extensively occurred in the Northwest of China before the Quaternary, and the current populations of them originated from a few separated glacial refugia following their habitat fragmentation in the Quarternary. Our results provide new insights on the impact of past geological and climatic fluctuations on the population dynamics of desert plants in northwestern China, and further enforce the hypothesis that there were several independent glacial refugia for these species during the Quaternary glaciations.

20.
Sci Rep ; 14(1): 6010, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472384

RESUMO

The Mediterranean fruit fly (medfly) (Ceratitis capitata, Diptera: Tephritidae), is an extremely polyphagous pest that threatens the fruit production and trading industry worldwide. Monitoring C. capitata populations and analysing its dynamics and phenology is considered of outmost importance for designing and implementing sound management approaches. The aim of this study was to investigate the factors regulating the population dynamics of the C. capitata in a coastal and semi-mountainous area. We focused on effects of topography (e.g. elevation), host presence and seasonal patterns of ripening on the phenological patterns considering data collected in 2008. The experimental area is characterized by mixed fruit orchards, and Mediterranean climate with mild winters. Two trap types were used for population monitoring. The female targeted McPhail type and the male targeted Jackson type. Traps were placed in farms located at different elevations and landscape morphology (coastal and semi-mountainous areas). The main crops included citrus, apples, peaches, plums, pears, figs, quinces and apricots. Adult captures were first recorded in May, peaked in mid-summer and mid-autumn and almost ceased at the end of the season (January 2008). Captures in the coastal areas preceded that of highlands by 15 days. Most of the adults detected during the fruit ripening of late stone fruit cultivars (first peak) and citrus (second peak). The probability of capturing the first adults preceded almost three weeks the peak of adult captures either considering the elevation or host focus analyses. The results provide valuable information on the seasonal population trend of C. capitata in mixed fruit Mediterranean orchards and can support the set-up of IPM systems in areas with various landscapes and different hosts throughout the fruit growing season.


Assuntos
Ceratitis capitata , Citrus , Malus , Tephritidae , Feminino , Masculino , Animais , Ceratitis capitata/fisiologia , Estações do Ano , Clima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...